2,053 research outputs found

    NA60 results on pTp_T spectra and the ρ\rho spectral function in In-In collisions

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass muon pairs in 158 AGeV In-In collisions. A strong excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of close to 400K events and the good mass resolution of about 2% have made it possible to isolate the excess by subtraction of the decay sources (keeping the ρ\rho). The shape of the resulting mass spectrum exhibits considerable broadening, but essentially no shift in mass. The acceptance-corrected transverse-momentum spectra have a shape atypical for radial flow and show a significant mass dependence, pointing to different sources in different mass regions.Comment: 4 pages, 4 figures, Quark Matter 2006 conference proceeding

    Study of the electromagnetic transition form-factors in \eta -> \mu^+\mu^-\gamma and \omega -> \mu^+\mu^-\pi^0 decays with NA60

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass muon pairs in 158A GeV In-In collisions. The mass and pT spectra associated with peripheral collisions can quantitatively be described by the known neutral meson decays. The high data quality has allowed to remeasure the electromagnetic transition form factors of the Dalitz decays \eta -> \mu^+\mu^-\gamma and \omega -> \mu^+\mu^-\pi^0. Using the usual pole approximation F = (1-M_{\mu\mu}^{2}/\Lambda^{2})^{-1} for the form factors, we find \Lambda^{-2} (in GeV^{-2}) to be 1.95+-0.17(stat.)+-0.05(syst.) for the \eta and 2.24+-0.06(stat.)+-0.02(syst.) for the \omega. While the values agree with previous results from the Lepton-G experiment, the errors are greatly improved, confirming now on the level of 10\sigma the strong enhancement of the \omega form factor beyond the expectation from vector meson dominance. An improved value of the branching ratio BR(\omega -> \mu^+\mu^-\pi^0) = [1.73+-0.25(stat.)+-0.14(syst.)]*10^{-4} has been obtained as a byproduct.Comment: Submitted to Phys. Lett.

    Study of dimuon production in Indium-Indium collisions with the NA60 experiment

    Full text link
    The NA60 experiment at the CERN-SPS is devoted to the study of dimuon production in heavy-ion and proton-nucleus collisions. We present preliminary results from the analysis of Indium-Indium collisions at 158 GeV per nucleon. The topics covered are low mass vector meson production, J/psi production and suppression, and the feasibility of the open charm measurement from the dimuon continuum in the mass range below the J/psi peak.Comment: Contribution at XXXXth Rencontres de Moriond, "QCD and High Energy Hadronic Interactions

    Latest results from NA60

    Get PDF
    The NA60 experiment has measured the production of muon pairs and of charged particles in In+In collisions at a beam energy of 158 AGeV. For invariant dimuon masses below the phi the space-time averaged rho spectral function was isolated by a novel procedure. It shows a strong broadening but essentially no shift in mass. The production of J/psi was measured as a function of the collision centrality. As in previous experiments studying Pb+Pb collisions an anomalous supression is observed, setting in at approximately 90 participant nucleons. Using the charged particles the reaction plane was reconstructed. The elliptic flow of charged particles increases with pt showing a saturation for pt > 2GeV/c. For the first time azimuthal distributions for J/psi are shown.Comment: 9 pages, 11 figures, talk given at the conference "Strangeness in Quark Matter 2006 (SQM2006)", March 2006, Los Angeles, USA, accepted for publication in Journal of Physics

    Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    Get PDF
    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.Comment: Accepted for publication in Physical Review Letter

    First Measurement of the rho Spectral Function in High-Energy Nuclear Collisions

    Get PDF
    We report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions at the CERN SPS. A significant excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of 360 000 dimuons and the good mass resolution of about 2% allow us to isolate the excess by subtraction of the decay sources. The shape of the resulting mass spectrum is consistent with a dominant contribution from pi+pi-->rho-->mu+mu- annihilation. The associated space-time averaged rho spectral function shows a strong broadening, but essentially no shift in mass. This may rule out theoretical models linking hadron masse

    Low Mass Dimuon Production in Indium-Indium Collisions at the CERN SPS

    Get PDF
    NA60 is a fixed-target experiment at the CERN SPS which measured dimuon production in nucleus-nucleus and proton-nucleus collisions. In this paper we report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions. A significant excess of pairs is observed above the yield expected from neutral meson decays. The excess can be isolated by subtraction of expected sources, thanks to the excellent mass resolution and large sample size.Comment: 4 pages, 3 figures, Contribution at XLIst Rencontres de Moriond, "QCD and High Energy Hadronic Interactions

    ϕ\phi Meson Production in In-In Collisions and the ϕ\phi Puzzle

    Full text link
    The NA60 experiment measured dimuon production in In-In collisions at 158 AGeV. This paper presents a high statistics measurement of ϕ→ΌΌ\phi\to\mu\mu with the specific objective to provide insight on the ϕ\phi puzzle, i.e. the difference in the inverse TT slopes and absolute yields measured by NA49 and NA50 in the kaon and lepton channel, respectively. Transverse momentum distributions were studied as a function of centrality. The slope parameter TT shows a rapid increase with centrality, followed by a saturation. Variations of TT with the fit range of the order of 15 MeV were observed, possibly as a consequence of radial flow. The ϕ\phi meson yield normalized to the number of participants increases with centrality and is consistently higher than the yield measured by the NA49 experiment at any centrality.Comment: 4 Pages, 2 Figures. Proceedings of the 20th^{th} International Conference on Ultra-Relativistic Nucleus Nucleus Collision

    First results from NA60 on low mass muon pair production in In-In collisions at 158 GeV/nucleon

    Full text link
    The NA60 experiment at the CERN SPS studies dimuon production in proton-nucleus and nucleus-nucleus collisions. The combined information from a novel vertex telescope made of radiation-tolerant silicon pixel detectors and from the muon spectrometer previously used in NA50 allows for a precise measurement of the muon vertex and a much improved dimuon mass resolution. We report on first results from the data taken for Indium-Indium collisions at 158 AGeV/nucleon in 2003, concentrating on a subsample of about 370 000 muon pairs in the mass range <1.2<1.2 GeV/c2c^{2}. The light vector mesons ω\omega and ϕ\phi are completely resolved, with a mass resolution of about 23 MeV/c2c^{2} at the ϕ\phi. The transverse momentum spectra of the ϕ\phi are measured over the continuous range 0<pT<2.50<p_{\rm T}<2.5 GeV/c; the inverse slope parameter of the spectra is found to increase with centrality, with an average value of T=252±3T=252\pm3 MeV.Comment: 9 pages, 6 figures. Plenary talk, SQM2004 conference, Cape Town, South Africa 15-20 September, 2004. To be published in Journal of Physics G: Nuclear and Particle Physic
    • 

    corecore